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Abstract 

We present the description of the methods and the calculation of the ratio: 
R(s) = utOr(e+e- + hadrons)/a(e+e- - pfp-) at the four-loop level of 
perturbative &CD. The calculation of O(OL~) QCD contribution ro the r(r- -t 
v, + hadrons) and the four-loop QED renormalization group p function are also 
described. An analysis of the scheme-scale dependence of the results within 
‘t Hooft’s minimal subtruction prescription is done. We apply the three most 
effective approaches for resolving the scheme-scale ambiguity and we fix the 
scale for which all of the criteria tested are satisfied. The variant of the MS- 
type scheme is suggested. The theoretical uncertainty of the strong interaction 
effects in R(s) is estimated at 4%. 
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1 Introduction 

The most impressive confirmation of the standard theory was obtained from exper- 
iments at e+e- colliders within last decade. The precise experimental tests of the 
theory of strong interactions (QCD) [l] confirms the fundamental postulates of the 
theory. 

Much information has been extracted from measurements of the characteristics of the 
process of e+e- annihilation into hadrons [2]. The most convenient characteristic of 
the process, the ratio: IS(s) = utot(e+e- + hadrons)/a(e+e- + p+p-) was studied 
within the available region of energy (,,& < 94GeV). First this process provides a 
fundamental QCD test, providing evidence for the existence of color, which has been 
introduced in [3]. Moreover, this process clearly proves existence of c (J;j = 3GeV) 
and b (6 = lOGel/) quarks and the measurements of R(s) at high energies gives 
a restriction on the existence of new quarks in the corresponding regions [4]. The 
e+e- annihilation is also the basic channel for studying heavy quark production. The 
comparison of the theoretical calculations and the experimental results allow one 
to extract the basic parameters of the theory, such as the strong coupling 
constant a,(&‘) and QCD scale parameter hqco [2, 51. Note also, that the ratio 
R(s) plays a key role in the QCD sum rule method, which is widely used in resonance 
physics and also for estimation of important’ QCD parameters, such as vacuum 
condensates, quark masses etc. [6]. 

The fundamental physical property of QCD - asymptotic freedom [l] enables one 
to study with confidence the high-energy behavior of the processes involving large 
momentum transfer. In particular, the ratio R(s) can be calculated theoretically in 
the deep euclidean region within the framework of perturbative QCD, by using the 
renormalization group (RG) formalism [7]. 

The result of the naive parton approach looks like: I& = 3Cy=‘=, Q;“, where the sum 
runs over the excited quark charge and the factor 3 stands for the color degree of free- 
dom of each quark flavors. Note, that this result does not deal with QCD. The effects 
of strong interactions come as perturbations and should be taken into account by a 
multiplicative factor modifying the parton result as: R(s) = &*(l+ Cr=r j~(os/x)“). 
The calculation of the perturbative coefficients f,, is an important problem from a 
viewpoint of estimation of the strong interaction effects on R. On the other hand 
it raises an important question on the behavior of the corresponding perturbation 
series and as a result the problem on the applicability of perturbative 
QCD to calculations of physical quantities. The dimensional regularization method 
[8] and the corresponding renormalization procedure [9] (see also [7]) in combination 
with the recent progress in calculational algorithms for relevant types of Feynman 
diagrams [lo], the infrared rearrangement technique [ll, 12, 131 and their computer 
realization [14, 15, 16, 171 (the algebraic programming systems used are REDUCE 
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[lS], SCHOONSCHIP [19] and FORM [20]) 11 a ow one to perform the RG-calculations 
to the four-loop level. 

The leading QCD correction to R was computed a long time ago in the zero-quark- 
mass limit [l]. The O(a,) correction for massive quarks has also been calculated 

WI. 
Using the methods and algorithms mentioned above, the three-loop correction to R 
was computed analytically in ref. [22, 231) and numerically in ref. [24]. As was 
analyzed in [22], the numerical computation of each Feynman diagram was done with 
high accuracy, however due to cancellations between different diagrams within their 
gauge invariant sets, the error in the final result reaches several percents. That is one 
of the main points of importance of the exact analytical calculations. 

Four years ago, the results of calculations of next-next to leading QCD corrections 
to R(a) was given in ref. [25]. The numerical value of the four-loop correction was 
very large. This cast doubt on the feasibility of obtaining reliable estimations for 
the QCD corrections to R(s) via perturbation theory. (The same effect was observed 
in perturbative calculations of the coefficient functions of condensates in QCD sum 
rules [26].) Inclusion of the O(af) correction changed the value of o, by about 10%. 
The corresponding value of AM.$ decreases drastically (by a factor of 2). However, 
further consideration shows that the result of ref. [25] for the four-loop correction 
is not correct. (The causes are discussed below.) Thus, in ref. [27] we presented 
new results of an independent reevaluation of the four-loop correction to R(s). Our 
result is much smaller and has the opposite sign compared to the incorrect result [25]. 
Later, our result [27] was confirmed in ref. [28]. ’ 

In this paper we describe the technology of our calculations of R(s) = otor(e+e- + 
hadrons)/o(e+e- + p+pL-) at the four-loop level of perturbative QCD. (The results 
of these calculations we have briefly reported in our recent publications [27].) Using 
the method of ref. [29, 301 and the results of our calculations, we obtained the O(af) 
perturbative QCD corrections to the ratio: Rr = r(r- + V, + hadrons)/r(r- -+ 
v,e-ve). (This result was briefly reported in ref. [31].) As an intermediate result, 
the four-loop QED /3 - function was computed. The scheme-scale dependence of the 
restrlts~ and the obtained perturbative series are also anaIyzed. 

The plan of the present paper is as follows. In sect.2 the outline of the calculational 
methods and the corresponding formulae is given. In sect.3 key details and the results 
of the calculation of R(s) at the four-loop level are presented. Sect.4 is dedicated to 
the description of calculations of the O(az) order corrections to the ratio R,. The 
calculation of the four-loop renormalization group functions in QED is described 
in sect.5. Sect.6 contains the detailed analysis of the obtained perturbative series 

‘Unfortunately in ref. [28] th e corresponding citation on ref. [27] is absent. 
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and the scheme-scale dependence of the results is discussed. The accuracy of the 
obtained results for the physical observables is estimated. The paper is completed 
with concluding remarks. 

2 General Relations and Calculational Methods 
Used 

2.1 Notation 

We consider the standard QCD [l], Lagrangian which is: 

L(z) = -1/4(G;,)* - 1/2(&A;)’ + ~q,(i8 - m,)q, + g~q,T”kq, 
f f 

+~,,~“(cY,,Soc + gf”*“A;)c’ 0) 

CPU = &A; - &A; + gf”*“AiA;, 8 = ~@a,,, k = y’Az, where ca are the Faddeev- 
Popov ghosts, A” and qf are gluon and quark fields and mf are the quark masses. The 
index f enumerates the quark flavors, total number of which is Nj. The generators 2’” 
of the SU(N), gauge group, the structure constants fob’ and d& obey the properties: 

(T”, T*] = ifabc, facdfbcd = CJ=*, trT”T* = T6”*, T”T” = CF * i, 

tri = NF, 6” = Na (‘4 

For the fundamental representation of SU(3),: 

CA = 3, CF = 413, T = l/2, NF = 3, NA = 8, dobcdabc = 40/3. (3) 

Throughout this work we use standard QCD Feynman rules [l], dimensional regular- 
ization [8] and the MS scheme [32] for ultraviolet renormalization. The three-loop 
QCD 0 function has the form [33]: 

P(%) = -Poo,/4?r - Pr(%/4*)* - !3*(a,/4r)3 + O(a;l), 

where pa = 11/3Ca - 4/3TNf; 

(4) 

p, = 34/3G; - 20/3C,,TNf - 4CFTNf; 
ps = 2857/54C~-1415/27C~TNf+158/27C~TZNfZ-205/9C~CFTNf+44/9CFT2N;+ 
2C;TNf. 
The standard parametrization for the running coupling to three-loops looks like: 

4s) 1 P,lnL --- 
- = POL /3,3L2 4n + p;La 

-(@?PL - PfhL + h/30 - p:, + o(L-4) (5) 
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where L = In(s/A*). Parametrization (5) has the same form and the QCD p-function 
coefficients are the same, at least within MS-type schemes. The scale parameter A 
depends on the renormalization scheme chosen. 

2.2 Hadronic vacuum polarization function 

Consider the hadronic vacuum polarization function defined as: 

H,,(Q) = i J e+ < Tj,(~h(O) >O d% = (wh - gpyqz)~(Q2) (6) 

where j,(z) = &@$ and Q’ = -q* is the euclidean momentum squared. 

The well known dispersion relation allows one to connect R(s) to the hadronic vacuum 
polarization function: 

D(Q') = -ia,,", ---+(Q") = Q2 /om (s T'& ds 

(Derivative here avoids inconvenient extra subtraction in the r.h.s.) where the func- 
tion D(Q*), which is introduced for convenience, satisfies the RG-equation [7]: 

a 
+ Pk+j-&- 

a 
- %-@s)~ D(&“/P”, m, a,) = 0 (8) s 

where p is ‘t Hooft’s unit of mass [8] and yrn is the anomalous dimension function of 
the quark mass, known at present at the three-loop level [34]. 

Acording to the operator product expansion technique [35] one can separate pure 
perturbative and nonperturbative contributions to the function H(Q”). Indeed, as 
shown in ref. [6], this function can be represented as: 

H(Q’) = (Perturbation Theory) t c G(Q) < 0, >o Qz” + (instanton contrib.) (9) 
“22 

where < 0, >s denotes vacuum condensates and C,,(Q) it’s coefficient functions. The 
last term in the above equation describes the instanton contributions, which were 
evaluated in ref. [36]. High order perturbative corrections to the coefficient functions 
of the dimension 4 power terms (gluon and quark condensates) in eq.(9) has been 
calculated in ref.[26] and for the dimension 6 power terms in ref. [37]. Note, that we 
will consider the region of very high energies where, in fact, only perturbation theory 
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contributions survive in R(s). The first term in eq.(9) can be expanded in powers of 
ms/Q* at high energies (at m*/Qs -+ 0): 

(10) 

It is easy to see that terms of the type m2/Q2 have the perturbative nature. The 
coefficient function of the next to leading term in eq.(lO) has been calculated in ref. 
[38] to the three-loop level. Unfortunately, the result of [38] contains an error, which 
fortunately is numerically small. The correct analytical result for this three-loop 
coefficient function has been presented in [39]. Note, that apparently there exists 
region of values of Q2, where power corrections (especially of the type mzn/QZ” for 
the heavy quarks) becomes important. 

At the first step, we neglect all contributions to ff(Q’), except perturbation theory 
and take all quark masses to be zero. So, we will deal with D,,(Q2/p’,a,). 

2.3 Renormalization relations 

The solution of eq.(8) is ( here and below we set Do E D ): 

QQ”/$,as) = D@,(Q’)) = c Ri(s/n)’ 
i>o 

where the i?,(Q*) is the running coupling. 

It is known that the vacuum polarization function is renormalized additively: 

II(Q’/p’,aS) = IIB(Q’/p*,af?) $2 E finite 

The bare coupling CY,” IS related to the renormalized one by the relation: 

01) 

(12) 

Here c = (4 - D)/2 and the D is the space-time dimension. Recall, that within the 
minimal subtraction prescription [9] the renormalization constant Z can be expressed 
as the following double sum [7]: 

z = -,& (2) I-l ZLkek 
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where Zik are numbers. Furthermore, for the bare vacuum polarization function we 
have the expansion in perturbation series: 

HB ($,a:) =z>, ($’ (~)“iw (15) 

where, the first index denotes the number of loops of the corresponding Feynman 
diagrams. 

Substituting eq.( 15) into the definition (7) and recalling the relations (11),(13), we get: 

D(z(Q*)) = ; (HI,-, + 2 [2&,-z; t 2IIz,--11 

+ (2)’ [$ (3k3 - 2AJb2) + ; (3n33.A - 2PJL1) + (3rI3,-1 - 2pJI*,o)] 

+ (2)” [$ (%-4 - Wo%--3 + 2p,&m2) 

+$ (4k-3 - W&,-2 - /hHz,..z + 2/@1*,-~) 

+; (4b2 -W&-1 - h&,-1 + 2@1*,~) 

+ (4% - VML,o - P,nz,o t 2$n*,1)] ) 

+u(a;) G fide 

(16) 

Furthermore, substituting (13)~(15) into (12), we obtain: 

ddI(&(Q*)) = 

~~bl + ZL-1) t 2 [$I*.-* + 2*.-z) + $I*,4 + z*.-I,] 

t$ 
(>I 

* &L.-3 - Pd*.-2 t z*.-*) 

+3.-* - P&-1 + z3,-2) t +3.-l - poII*,o $ Z&l) ] 

+$ 
(>I 

3 $%-* - ‘vo&-3 t p:II*,-2) (1 

t&w - 2Po&-2 + 13,2H*,-1 - p1n*,-*/2 + z,,-,) 

9 
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t&n*,-* - 2mL1 t Pozn2.0 - p,n*,-l/2 + 24.4) 

+$L1 - 2Poh + PLw*,1 - Pln*,o/2 t z,,-I)] + O(cyZ) 

2.4 Evaluation of the renormalization constants 

We now turn to a brief discussion of the evaluation of renormalization constants 
within ‘t Hooft’s scheme [9], using Vladimirov’s method [ll] and the so-called Infrared 
rearrangement procedure [12, 131. 

To calculate the renormalizaton constant Zr to the one-particle-irreducible Green’s 
function r it is convenient to’use the following representation [ll]: 

Zr = 1 - KR'T (18) 

where K picks out all singular terms from the Laurent series in E: 

K cc& = c CUE' 
i<O 

and R' is defined by the recursive relation: 

R'G = G - c KR'G,...KR'G, x G,(G,+...+G,) 09) 

where a sum is running over all sets of one-particle-irreducible divergent subgraphs 
of G and G/(o,+...+o,) is the diagram G with the subgraphs Gr t . . . t G, shrinked to 
a point. Actually, R' is the ordinary Bogoliubov-Parasiuk R-operation [I, 71 without 
the last subtraction. So, R' subtracts all “internal” divergences only and is connected 
to the ordinary R-operation as: 

R = (1 - K)R' 

Thus, to calculate the renormalization constants Zij one should write the diagram 
representation of II and apply KR' to the corresponding graphs or, in other words, 
one should evaluate the counterterm for each graph. 

As we shall see below, the benefit of using the relation (18) is based on the following 
fact, that the KR' for each diagram is a polynomial in dimensional parameters. This 
fundamental property of the ‘t Hooft’s minimal subtraction prescription is the basic 
idea of the various versions of the infrared rearrangement (IR) technique [ll, 12, 131, 
the essence of which is as follows. Using that fact, that KR' is a polynomial in masses 
and external momenta of the diagram, one can remove dependence on the external 
momenta by differentiating (usually twice is sufficient) with respect to the external 
momentum and then external momentum is set to zero. However, in this case infrared 
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divergences appear. In order to prevent this, one should introduce a new fictitious 
external momentum as an infrared regulator flowing along some line of the diagram. 

The main result of application of the IR-technique [ll, 12, 131 is that the problem 
of calculating the counterterm of an arbitrary l-loop diagram with an arbitrary num- 
ber of masses and external momenta within the MS-prescription can be reduced, 
through infrared rearrangement, to the problem of calculating some I- 1 -loop mass- 
less integrals to 0(&O) with only one external momentum. In the next section the 
full calculational procedure will be demonstrated for a typical four-loop diagram, 
contributing to 2. 

3 w = ( crtot e+e- + hadrons)/a(e+e- + psp-) at 
the 4-100~ Level of Perturbative QCD 

3.1 R(s) via renormalization constants 

The vacuum polarization function R(Q*) h as a cut along the negative Q* axis (for 
the massless case). The ratio R(s) is the discontinuity of the II across this cut 

PI: 

R(s) = &I(-s + ix)-~II-s - ic)) (20) 

Integrating (7) and substituting the RG-improved perturbation theory expansion (ll), 
after analytical continuation of the results into the physical region (see: [40, 41, 42]), 
we obtain to U(a2): 

R(s)= &I + qRI + (F)*R, + (T)"(R3-R&'/3) (21) 

The last term in this equation is scheme independent and is a result of the procedure 
of analytical continuation of the results of perturbative calculation of dn(Q*)/dQ* to 
the physical region. (for details see: [40,41, 421). Note, that Ri in the above equation 
is the perturbative coefficients of the D(Q*) function (see eq.(ll)). 

We are going now to obtain some of the key relations for the renormalization con- 
stants. Here we follow the procedure, which has been described in ref. [43] at the 
three-loop level. Let’s analyze the expression (16). It is easy to see, that the condition 
divD(Q*) = 0, automatically gives lI(2, -2) = 0. Then, analyzing the orders O(az) 
and O(oz), one can obtain II(3, -3) = 0 and II(4, -4) = 0. These relations with the 
condition &II(Q*) = 0 gives: Z*,-2 = 0; Zs,-s = 0 and Z.,-, = 0. The above rela- 
tions mean that the leading poles should cancel in the sum of all relevant diagrams 
at a given order of cy,. Actually, as the explicit calculations show, the leading poles 
cancel within each gauge invariant set of diagrams. This fact serves as one of the 
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useful checks of the calculations. From the condition of cancellation of the poles in 
(17) we get the following two sets of relations: 

323.4 + ,!3clz2.-1 = 0 

2z4,-3 + M-2 = 0 

224.4 +,Alz3.-I +13,2*,-l/2 = 0 

(22) 

and 
n,,-, = -z,,-, 
jI2.-i = -z,,-, 

h-2 = -23,~2 - ,hZz.-1 
h-1 = -z3.-1 + 40~2.0 (23) 

K-L = -z,,-, + 2i%3~3.0 t o,n*.o/2 - /m*., 

n4.-2 = -z4.-2 - woz3.-1 - i-3,22.-112 + Lm.0 
IL-3 = -z4,-3 - 'PoZ3,-2 - L%z,,-, 

The first relation in (22) and first four relations in (23) coincide with the analogous 
relations obtained in the three-loop calculations previously [22, 431. The set (22) also 
serves as a useful test of the calculation. 

Substituting (23) in (16) and recalling (21) we obt,ain our main expression for R(s): 

R(s) = 

; -- Zl,-, + ~(2Z*,-,) + (Z)‘(3Zs ,-I, - ,0&o) 

t (2)s (4Zs.-I - 2/3&o - P,~I + 2/3,2ff2,1 - 2Zs.-,r*P,2/3 t O(a:) 
I 

(24) 

The expression obtained for R(s) shows that in order to calculate the [-loop contri- 
bution to R, one should calculate the l-loop counterterm Z to the bare quantity TfB, 
and the 1 - 1 -loop approximation to ffB. So, in our case we deal with calculations 
of massless one-, two- and three-loop Feynman diagrams up to their finite part and 
the divergent parts of the four-loop diagrams. 

The algorithm [lo] and the computer programs [14, 151 allow one to calculate prop- 
agator type Feynman diagrams to three-loop level only, up to their finite parts. So, 
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it is impossible to do a straightforward calculation of the divergent parts of the nec- 
essary four-loop diagrams, without extension of the above algorithms and programs 
to four-loop order.’ In this case more refined methods should be used. In the previ- 
ous section we have briefly mentioned the so called infrared rearrangement procedure 
[ll, 12, 131. Through this procedure the problem of calculation of the counterterm to 
the arbitrary I -loop diagram with an arbitrary number of masses ,and external mo- 
menta within the MS prescription [9] can be reduced, to the problem of calculating 
some I- 1 -loop massless integrals up to O(P) with only one external momentum. 

3.2 Full calculational procedure with a typical four-loop di- 
agram 

Now we turn to demonstrate a full calculational procedure for the typical four-loop 
diagram pictured in fig.1, which contributes to Z. 

Fig. 1 A typical four-loop nonplanar type diagram 

We need to evaluate the counterterm to the diagram pictured in fig.1. In other words, 
we have to evaluate -KR’ of this diagram. It is easy to see that the given diagram 
diverges as 

G - dim, Q-l4 

and the superficial degree of divergence d = 2. Now, using the fact that the countert- 
erm has only polynomial dependence on the external momenta Q within the minimal 
subtraction prescription, one can remove such a dependence by differentiating twice 
the diagram with respect to Q and then set external momenta to zero. At the next 
step, because there is no more dependence on the external momenta, one can in- 
troduce a new fictitious external momentum, flowing through one of the lines. This 

‘The new program HEPLoops (version 3) [17] calculates the three-loop Feynman diagrams up to 
terms of O(E) and some types of four-loop diagrams up to their finite parts. Some of the four-loop 
diagrams contributing to R(s) have been recalculated by HEPLoops. 
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line should be chosen, according to the necessity of symplifying the topology of the 
diagram, and to avoid infrared divergences. 

Q=o 

-KR’{4(2-D)’ @ + 2 @ } (25) 

where & = cY/~Q,~Q”. The dot and dashes on the lines result from differentiating 
the corresponding fermion lines: 
clQ[t-- (P + Q)]+o = 2(2 - D)[+-- P] = 2(2 - D)F/P; 
0/6’Q”[+- (P + Q)]+,, = [P +-+t- P] = (-~/P2)y”(~/P2). 
Boxes containing the corresponding three-loop propagator type insertions with all 
divergences, including the overall one, are subtracted (complete R - operation). The 
dotted lines means that this line is temporarily “torn”. After evaluation of boxes 
the parts of the torned line should be pasted together again and the fourth loop 
integration should be done, taking into account the corresponding exponents of the 
propagators due to the three-, two- and one-loop “box” insertions. The above pro- 
cedure gives a large simplification of the problem. Indeed, at the next step we can 
calculate the three-loop propagator type insertions (boxes) and, finally, evaluate the 
fourth trivial loop. 
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+-J- G Fi 
FrDi 

= 

.Q- (a (--J-j- (F&)3::, 

+J- -R{B}= fJp(*),. 

Fig.2 Complete R-operation for the 3-100~ insertions 

The complete R-operation of the three-loop diagram insertion corresponding to the 
ones at the r.h.s. of (25) is given in fig.2. Graphs in the brackets correspond to 
two- and three-loop cunterterms respectively. Now, the problem of calculating the 
four-loop contribution to 2 is reduced to evaluation of the one-, two- and three-loop 
propagator type massless diagrams up to O(?). These calculations can be done by 
using the program MINCER [15] and LOOPS [14]. Note, that in the present calcu- 
lation we have used the extended by us version of MINCER, which, in particular, 
includes the new block for 4th loop integrations and the block for ultraviolet renor- 
malizations. We have used also the PC version of LOOPS for calculating one and 
two-loop counterterms (see more details below). 

It is important to stress that, in fact, it is sufficient to evaluate only the CR for 
the relevant three-loop insertion. In other words, there is no necessity to calculate 
three-loop counterterms. Indeed, the more detailed analysis gives: 

R[G] = R’[G] - (1 - D/2)X 

where G is the corresponding three-loop insertion. The relation (26) allows simple 
computer implementations and facilitates calculations considerably. 

Complete R-operation of each four-loop diagram generally has the form: 

($p -g (~)i4-‘)cc,(l,Ej~4-,(L) 
15 



where, f;(c) is the result of calculation of the corresponding Feynman graph includ- 
ing the last trivial loop integration. cl are the l-loop counterterms (polynomial in 
l/s). According to the well known Bogoliubov theorem [l], the terms of the type 
l/~~(lrz~~/Q~)~, which appear due to the expansion of the factors ($/Q’)” into the 
Laurent series in e, must be canceled in the final answer for the particular diagram. 
This fact gives us an opportunity to test the calculations during the evaluation of 
each diagram. 

Finally, for the contribution to the 2 of the diagram pictured on fig.2 we obtain: 

(2)” NFC.~(CF - C,)(CF - CA/~) [+4$ - 26; + y; - 405(3)$] 

The CPU time for the above diagram on the 0.8 MFlop EC-1037 IBM compatible 
mainframe was over 6 hours. The extended version of the program MINCER for the 
system SCHOONSCHIP was used. 

3.3 Four-loop results 

The total number of topologically distinct Feynman diagrams contributing to Zi,i 
is 1; to Za,i is 2; to 2s.i is 17 and to Zd,i is 98. However, after application of the 
IR-procedure, which as discussed above, involves differentiation twice with respect to 
external momentum of the diagram, the number of four-loop diagrams, which need 
to be calculated, increases to approximately 250. Furthermore, there are one-, two- 
and three-loop diagrams, approximately 600, which need to be calculated to subtract 
subdivergences (evaluate R’) for all four-loop diagrams. 

All analytical calculations of the four-loop diagrams have been done by using the 
program, which is an extended version of the program MINCER [15]. Evaluation 
of one- and two-loop counterterms has been performed by the PC version of the 
program LOOPS [14]. The above programs are written on the algebraic programming 
systems SCHOONSCHIP [19] and REDUCE [18] respectively. We have used three 
IBM compatible, O.SMFlop EC-1037 mainframes with SCHOONSCHIP system and 
IBM/PC AT-386 24MHz computer with the REDUCE system. The total CPU time 
for the mainframes was over 700 hours. Later, some of the difficult four-loop diagrams 
have been recalculated by the HEPLoops new program for analytical multiloop 
calculations [17], using only the IBM/PC AT computer. This program is written 
on the algebraic programming system FORM [20], and is 3-7 times more efficient 
then the program MINCER (depending on the type of computer and the problem 
complexity). Program HEPLoops is especially oriented towards very large scale four- 
loop calculations. 

The full graph-by-graph results will be given elsewhere. The Feynman gauge is 
used. The momentum integrations are performed within the MS prescription, which 
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amounts to formally setting y = C(2) = ln4?r = 0. We obtain the following analytical 
result for the four-loop photon renormalization constant in QCD: 

Zph = 1 - z = 

1+3TQ; [-ii + fj (@2cF)) 

>I 

+$ (-++A + ~cFc:-~~,~~:,-~~,~~F~A+~~;~zCF) 

+; gc: + (-g + T<(3)) c;ca + (-g - 75(3)) c,c; 

N,TC:, + g + ?5(3)) 
308 

NfTCFCa$-NfT2C~ 
243 II 

(27) 

It should be stressed that the Riemann c-functions C(4) and C(5), which appear at the 
graphwise level are canceled in the above expression. Moreover, as we have observed, 
the C(4) has disappeared within each gauge invariant set of diagrams. It is easy to see 
that ((3) disappears for QED (CF = 1, CA = 0,T = l/2) except the last term, which 
comes from the “light-by-light” type diagrams (fig.3). Terms of such type appear 
only at the four-loop level and in higher-order. We still have no explanation for the 
cancellation of the C-functions. Note that the diagrams pictured in fig.3 are the most 
complicated diagrams and the computation of each of them requires over 8Oh of CPU 
time. Note also that the result (27) d oes not depends on the choice of scheme within 
the MS-type schemes. 

Fig.3 “Light-by-light” type diagrams 

17 



In order to evaluate R(s) to O(c$), besides the four-loop Z we have to calculate the 
bare quantity IIB(QZ) to the three-loop level, keeping the terms of O(E) for the twe 
loop and terms of O(P) for the three-loop results. We get the following analytical 
result for the unrenormalized hadronic vacuum polarization function at the three-loop 
level in the MS scheme: 

IIB(Q') = 

3zQ; [ (ii + ; + + + FE’ - ;<(3)~‘) 

+ i%) CF (2: + T - 16[(3) + E (+ - ?[(3) - 24C(4))) 

(28) 

+cFcA 7; + 
( 

1948 1 
~- - y<(3); + F - y<(3) - 88[(4) - T<(5)) 

27 E 

+CFTN, -f$ - !t!i + !&3): _ !?!$ + +3) + 32C(4)))c o(a:)l 

Substituting the expressions for the relevant Zi,j and II,j into eq. (24) and recalling 
the values for PO and D1, we get the following analytical result for R(s) at the four- 
loop level, in the MS-scheme: 

IF(s) = 
37Q; (1 t (s) (3CF) 

t CFCA (F - 44((33) t NfTCF(-22 + 16<(J))] 

t (2)” [c)! (-;) t C;Ca(-127 - 572[(3) + 880<(5)) 

y<(3)) -?r%F (ycA - ~N,T)'] + o(u:)) 

+ (2)” (FQ,)' (+)' [T - 128i(3)] + 0~~:) (29) 
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Note, that ((5) appears in the final result due to the contributions from IIs,s. For the 
standard QCD with the color SciJ3) gauge group we obtain: 

37Q; (I + (:) t (:)' [g -W(3) -N/ (i - $3))] 

87029 
- - Y<(3) t Y<(5) 

288 

-g t ?[(3) - ;[(5)) t N; (E - +3)) 
(30) 

-$ (11 - $)‘])t (TQ,)2 (z)" [; - ;C(V] + o(4) 

and finally, taking into account the values for the relevant Rieman C -functions: C(3) = 
1.2020569 and C(5) = 1.0369278 we obtain the numerical form: 

R=(s) = 

37Q; [I $ (z) t (:)'(I.986 -0.115Nf) 

t(y(- 6 637 - 1.2OONf -0.005N;f (TQf)* (~)31.24WO(a:l 

(31) 

The obtained result is smaller by an order of magnitude and has the opposite sign 
compared to the results of [25]. The terms of order O(Nf) and O(N;) coincide with 
the corresponding terms of the previous result of [25]. Note that only 23 four-loop 
diagrams contribute to O(N,) and 2 four-loop diagrams contribute to O(Nj). These 
diagrams are much simpler then the other ones, since one can directly substitute 
the results for one- or two-loop fermion loop insertions. The most complicated dia- 
grams are pictured in fig.4. The CPU time for each of them was over 1OOh and the 
intermediate expression had as many as N 10s - 10s terms. 
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fig.4 Some of the most complicated diagrams 

There are at least two sources of error in the program [44], which was used in the 
previous calculation [25]. The first is an incorrect trace calculation and the second 
is due to an error in the subroutine, which calculates the expansions of the Laurent 
series in s of the basic one-loop integrals. Note that the algorithm [lo] reduces all 
multiloop calculations to the calculation of some basic one-loop integrals (the so 
called G-functions). Unfortunately, both errors affected the terms of order 0(&O) 
only and could not be eliminated by the tests of cancellations of poles, including 
those proportional to logarithmic terms. More details on the discovering of errors in 
the program [44] are given in sect. of concluding remarks. 

It is known, that the perturba.tive coefficients for R(s) are scheme dependent. The 
above result was obtained in the modified minimal subtraction, the so-called MS- 
scheme [32]. Here we present the results of calculation in another version of minimal 
subtraction scheme, the so called G-scheme, which was introduced in [lo] and is very 
convenient for practical calculations. The G-scheme is defined in such a way that the 
trivial one-loop integral in this scheme is: 

J 
D 

($J p*(p: 102 = $2 &Z,: 

and the result for R(s) looks like: 

RG(s) = 

3=7&j [I + (;) $ (z)*(-3.514+0.21SN,) 

$ (F)” (-10.980 - 0.692Nf t O.O3N* ,I- (~Qf)‘(~)‘l.240+O(e:) 

(32) 

Finally, in the original MS-scheme [9] we get: 
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RMS(s) = 

37Q; [I t (:) t (:)‘(7.359-0.326Nf) 

t($ 56026-8.779Nf +O.l76N+ (~Qf)*(~)‘1.240to(a:) 

(33) 

The analysis of the problem of the scheme dependence of the results will be given in 
sect.6. 

4 The O(a:) Contribution to l?(~- -+ v, + hadrons) 

Another important process for testing of the standard model predictions, is the 
hadronic decay of the r - lepton. 

As was shown in [29, 301, the ratio 

R, = r(T- --t v, $ hadrons) 
Iy7- -+ I&e-77’,) (34) 

is calculable in perturbative QCD. Strictly speaking, besides the QCD perturbative 
parts the nonperturbative and weak contributions should be included to estimate &: 

R, = R&t t Konpert + Keak (35) 

where, each of terms in the r.h.s. was estimated in [29, 301. However, in calculations 
of O(az) corrections to the $,7t the incorrect value for the four-loop correction to 
R(s) [25] was used. Here we use the new value for the four-loop R(s) (see eq.(29-31)) 
and obtain a corrected expression for the four-loop Rz,,,. (A short presentation of 
this result has been made in [31].) 

4.1 Perturbative QCD contributions 

The perturbative part of the ratio R, can be expressed by the integral around a 
contour ] s I= M,’ in the complex s-plane (fig.5). In the chiral limit it looks like (See 
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[29, 301.): 

(36) 

Fig.5 Integration contour C 

The transverse part of the relevant combination of vector and axial vector color singlet 
quark current two-point correlation functions nr(s) is related to the D(s)-function, 
which was defined in sect.1: 

s$rrTjs) = 3gf;,“D(s) (37) 

where the V,,, are the Kobayashi-Maskawa matrix elements. Reexpanding the a,(s) 
in the power series of a,(M,2), we obtain: 

as(s) ~@f,2) + 4% 2 PO - = 77 + yr; ‘) ( 1 T ;?l?l& I 2 3 7 ( $z+ + !p; 
I T ) + o(g) (38) 

Performing the integration in (36) and taking into account (38) we obtain in terms 
of perturbative coefficients of R(s): 
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RYt = 3(1 v,ci 1’ + 1 v,, I’) R,, + 

R~-~R*PO-~fl+(~-~)~~)+o~~:)l (3g) 

Note that the diagrams pictured in fig.3 do not contribute to R,. So, the term which 
is proportional to the (C, &,)* should be omitted. 

The analytical result for the ratio R, in the MS-scheme with (I Kd I* + 1 Vu, I’) x 1 
looks like: 

+(.(~~))3[~-~C(3)t~1(5) 
(40) 

+NI ( -g + z<(3) - ;6(5)) + N; (E - ;C(3)) 

+(ll-;N,)’ ] + O(4 
> 

or, substituting relevant values for Rieman C-functions and r we obtain: 

3 [l + ("(7') + (=(:))'(6.3399 -0.3792N,) 

(48.5832 - 7.8795Nf + 0.1579N;) + O(C$) 

I 

(41) 

Note, that this result is more sensitive to the number of quark flavours than the result 
for e+e- annihilation. An analogous calculation has been done in ref. [45], the result 
of which agrees with ours [31]. These results were confirmed in ref.[28]. 
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4.2 Nonperturbative and Electroweak contributions. 

The nonperturbative contributions to R, can be expressed as a series of power cor- 
rections in l/M:: 

Rnonpert - 
Gf(mpfT), -%) CZi < 0% >O 

T 
M: 

+C 
i>* 

MZi T 

where the mp are U, d, s running quark masses, < Osi >o are the so-called vacuum 
condensates, which are usually evaluable phenomenologically and the Ci are their 
coefficient functions, which include short distance effects. Note, that nowadays the 
only way to estimate the strong interaction contributions of the condensates is a 
perturbation theory calculation. The high-order perturbative QCD contributions to 
the coefficient functions of the dimension 4 corrections (of the gluon < o,G* >s 
and quark < rnfq,q~ >o condensates) have been calculated in refs. [26, 461 and 
confirmed in ref. [47]. The leading perturbative QCD contributions to the coefficient 
functions of the dimension 6 corrections was calculated in ref. [48]. However, as 
was shown in ref. [26] high-order perturbative corrections to some of the coefficient 
functions are too large. For example, for the coefficient functions of the strange quark 
condensate in the vector channel A.,, m 3011,. This means that renormalization 
group invariant criteria to calculability of the QCD contributions to the coefficient 
function via perturbation theory is not fulfilled. The coefficient functions of the gluon 
and dimension 6 condensates are calculated up to O(cyI) order and to analyze the 
convergence we need the next two corrections (491. The above situation allows us to 
estimate QCD corrections to the condensate contributions not better then the order 
of magnitude. On the other hand there is another source of theoretical uncertainties 
in estimation of condensate contributions. The situation is especially complicated 
at dimension 6 and higher, where the operator basis of expansion includes a large 
number of operators. Nowadays, there are no precise methods to estimate their 
matrix elements. For the matrix elements of four quark operators (dimension 6) the 
vacuum saturation approximation [6] should be used to express them as the square of 
the two-quark matrix element. Finally, the following should be stressed. In fact we 
are trying to estimate contributions from the series (power series) of the asymptotic 
series (coefficient functions). In this case, the unsuitable rule of inclusion of the high 
order corrections to the coefficient functions could lead to a deviation from the true 
value. (Such an effect was observed in ref. [49] for the QCD sum rule method.) 
So, the question of how many orders should be included for a particular coefficient 
function, could be answered only after the detailed investigation of each particular 
Ct3S!. 

Summarizing the above discussion, we conclude that due to the large theoretical 
uncertainties in the estimation of the nonperturbative contributions, their inclusion 
is meaningless, especially as the size of such contributions is definitely less then 1% 
(about f0.5%). The O(m*) order terms has a pure perturbative character. The 
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calculation of the coefficient functions of the O(m*) terms at the three-loop level 
has been done in [38] (However, the results of [38] are incorrect. These results has 
been corrected in pq.) Here we note that, in this case the perturbative series is also 
not well-behaved. Moreover, the contribution of such terms is suppressed by sins’& 
and even for the strange quark case is less than 1%. So, in further estimations we 
neglect all power corrections and estimate their contribution in the total theoretical 
uncertainties in the evaluation of & as a 411%. 

The leading order electroweak corrections were calculated in ref. [50]. These cor- 
rections give roughly +2% contributions to the &. We will include these correc- 
tions in the multiplicative factor [50]: q,,,.,k = 1.0225 z!z 0.0050. Recall, that we set 

(1 Kd I* + 1 v,, 1’) = 1. 

5 Four-loop QED Renormalization Group Func- 
tions 

We now turn to the calculation of the standard QED renormalization group functions. 
These quantities can be obtained as an intermediate result of the calculations of 
R(s), replacing the SU,(3) gauge group invariants for the corresponding diagrams in 
a proper way. 

5.1 General formulae 

The Lagrangian density of standard QED is: 

L QED = 

-~F,,F’Y+i~$jjyilDp$j -Cmjqj$j --$ &A%?@@ (43) 
j , G 

where F,, = 8, A, - 8, A,, and D, = 8, - ieA,. a~ is the gauge parameter, mj are 
the fermion masses, $I and A,, are the fermion and photon fields and e is the electric 
charge. 

Renormalization constants are defined by the relations: 

$B= z&l 

/,P = Z'/=AW 
B ph R 

CyB = &(Y, (a = e2/4x) 

It is easy to obtain the Ward identity in the following form: 

z, = 22 

(44) 

(45) 
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which leads to the relation: 

ZphQB = aR (46) 

Using relation (46) and the standard definition of the QED p-function within the 
MS-scheme: 

&%?ED~4 = &P2$ la%B-fiz SW 

we obtain our main formula: 

(47) 

bfS(~) = -& fli 1 _ aylnZ (4S) 
aar ph 

5.2 Four-loop results 

The photon field renormalization constant z,,h can be found from the QED relation 
(analogous to (27)), where only 58 QED f our-loop diagrams are contributing to the 
II(~s/&s, o). The prescription for the evaluation of the diagram contributions to the 
IIn is analogous to the case described in sect.2. The total CPU time on the three 
IBM compatible EC-1037 computers was approximately 400 hours. 

Using relations (18) and (48) and the relevant graph-by-graph results for the QED 
case (C,V = 1, CA = 0, T = l), we obtain the following result for the four-loop QED 
/3- function in the MS-type schemes: 

+4Nf (E)” - Nj (2 + TN,) (5)” 

-Nr [46 - (g - +2C(3)) Nf + EN;] (;)” + O(d) (49) 

The four-loop QED p- function first was calculated in [51] with the help of the program 
(441. However, further consideration shows that the results of [51] are wrong. The 
four-loop part of our result is clearly different (and are simpler in appearance than) 
the result in [51]. The same result was obtained also by the authors of ref. [51]. The 
above result was reported in the joint talk [52] and published in refs. [27, 531. 

It is useful for further applications to present the result for the Fr function, which 
can be obtained from the result for p QED, by subtracting the contributions of the 
diagrams with inside fermion loop insertions into the photon lines and reducing the 
power in a/4~ by one (see, e.g. [l]). We obtain: 

Note, that all coefficients up to four-loop level are rational numbers. In order to 
obtain the Gell-Man Low q(o) function (QED /3-f unction in the MOM-scheme) the 
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following transformation equation should be used (see: [l, 52, 531 ): 

*(a) = bhda,~~) (51) 

For the rP function at the four-loop level we obtain [52, 531: 

‘P(a) = $N, (5)’ +4Nf ($Nf (2+(+$3)),,) (2)’ 

104+ y<(3) - FS(5)) ( N, - 128 - y<(3)) $1 (;)” 

+0( a”) (52) 

6 Renormalization Group Ambiguity of Pertur- 
bative QCD Predictions 

Due to the key role of the e+e- annihilation R-ratio for the phenomenological conse- 
quences of the Standard Model, it is important to evaluate this quantity with sufficient 
precision theoretically. The accuracy of present experimental measurements of the 
QCD effects in R at e+e- - colliders is about 13-15s [2]. However, the only way 
to theoretically estimate R(s) is by perturbation theory, which involves calculation 
of a large number of Feynman diagrams and, as we have discussed above, requires 
a huge amount of computer and human resources. For example, to O(c$) we have 
calculated 98 four-loop Feynman diagrams. [27]. The next order requires calcula- 
tion of approximately 600-700 five-loop diagrams. Calculations of such a scale are 
extremely difficult. On the other hand, perturbative QCD series are asymptotic ones 
and the question how many orders need to be calculated, could be answered only 
from estimations of remainders (see, e.g., [7]). M oreover, perturbative coefficients 
beyond the two-loop level, as well as the expansion parameter, are scheme-scale de- 
pendent. The scheme-scale ambiguity - fundamental property of the renormalization 
group calculations in QCD - doesn’t allow one to obtain reliable estimates from the 
first few calculated terms without involving additional criteria. 

In this section we discuss the problem of extraction of reliable estimates for observ- 
able quantities via perturbation theory. The problem of scheme-scale dependence 
of perturbative QCD predictions will be considered. We will apply the three most 
effective approaches for resolving the scheme-scale ambiguity and we will fix the scale 
for which all of the criteria tested are satisfied for the quantity R(s) at the four-loop 
level. The quantity R, will also be considered. Note, that we will deal only with one 
parametric family of the MS-type schemes. 
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6.1 Perturbative QCD series 

The R-ratio is given by the perturbative calculation in the following form: 

R(s) = T,, y,z + r3(-yy3 + . ..) (53) 

We are considering high enough energies where R is a function of a single variable - 
the center-of-mass energy squared (massless case). Our aim is to evaluate pure QCD 
effects in R, which start with the term O(a,). Without losing generality, we adopt 
‘t Hooft’s “minimal subtraction” (MS) prescription [9]. There is an ambiguity in 
the choice of renormalization scale parameter p. Usually we set p* = s and absorb 
the large log’s in the definition of the running coupling. On the other hand the 
choice $ = xs (x E e-‘) for all x gives equivalent expansions. Obviously the sum 
of “all” terms in (53) doesn’t depend on the choice of p. However, in practice, we 
deal with truncated series, where the sum has a nontrivial dependence on the choice 
of renormalization parameter. Here we will keep the “natural” choice 11s = s and 
the ambiguity will transfer to the prescription: J d4p ---+ J d4-2Ep(~*e(-‘+o(a)))c. By 
changing t we get different MS-type schemes. We can always reexpand (53) in a 
new scheme (with a new A in (5)) and so redistribute the values of ri (; > 1). All 
these schemes are equivalent. On the other hand a new scheme may be “better,” but 
we can conclude this only based on the knowledge of remainders. The problem of 
scheme-scale ambiguity, which is in fact a problem of remainders can be formulated as 
follows: How does one choose the scheme (or A) in order to make remainder minimal 
in the series of type (53) for the given range of energy and what is the numerical 
uncertainty of the approximation (53)? H ere one should distinguish the following two 
questions. First, what is the best accuracy to which the given quantity is calculable 
via perturbation theory? Second, what is the accuracy of the given approximation? 
A few notes are in order. First, it should be stressed that perturbative QCD series 
are asymptotic and are apparently divergent. Moreover, no reliable estimates of the 
remainders are known at present. However, it is known from the theory of asymptotic 
series (see, e.g., [54]), that 

I &@22) - R(Q’) I= RN -+ A&en, when N + Nopt (54) 
,=l 

which means that, the remainder RN goes to its minimal value ARmi, when the 
number of orders goes to its optimal value NoPt. Inclusion of the next to NOst orders 
will lead away from the correct value. It is known that for a signchangable asymptotic 
series the remainder can be estimated by the first neglected term [54] (or by the 
last included term). However, it’s still unknown if the QCD perturbative series has 
this character. We will assume as a hypothesis that within QCD one can estimate 
the remainder by the first neglected term or last included term. Now, the minimal 
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possible error, which defines the best accuracy of the perturbation theory for the 
given quantity has an order of AR,;, - r~+io~+i(s). Note that both the number 
Nopt and the value of the ARmi, depend on the range of energy. 

6.2 Expression for R(s) and R, within one parametric family 
of the MS-type schemes 

Here, using the results of sect.3 we obtain the four-loop analytical result for R(s) 
with explicit scale dependent form: 

R’(s) = 

g - llC(3) + tt) + Nf (+ + i<(3) - it)] 

2 121 

+% 

+N, ((-E + y<(3) - ;[5 + ;i?) + t (-; + ;C(3)) - t$) 

+N; 

(55) 

In numerical form we get: 

R’(s) = 

[(1.9857 + 2.75t) - N,(O.1153 + O.l667t)] 
(56) 

+ 3 [(-6.6369 + 17.2964t + 7.5625t*) - Nf(1.2001 + 2.0877t + 0.9167ts) 

+Nf(-0.0052 + 0.0384t + O.O278t*)] 1 ( 1’ - TQ, (:)’ 1.2395 + O(a;) 
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where a: can be parametrised in the form of (5) via At = e-‘/‘Am. Obviously, 
t = 0 corresponds to the MS-scheme [32]. t = In47r - 7 will transform the result to 
the original MS-scheme [9]. (C om p are to eq.(29)-(31) and (33) respectively.) t=-2 
corresponds to the G-scheme [43] (compare to eq.(32)). 

For the perturb&w contributions to the quantity R, we obtain an analogous expres- 
sion: 

RP,"'(t) = 

3xQ; l+ $ 
f IO K 

(57) 

and numerically: 

[(6.3399 + 2.75t) - N,(O.3792 + O.l667t)] 

+ 3 [(48.5832 + 41.2443t + 7.5625t2) - N,(7.8795 + 4.9905t + 0.9167t2) 

+ Nj(O.1579 + 0.12642 + 0.0278t2)] + 0(a;) 
I 

(58) 
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6.3 Various approaches to resolve the scheme-scale ambi- 
guity and the m-scheme 

Several approaches were suggested to deal with the scheme-scale-remainder problem. 
Among them we will use the most effective ones: 

1. “Effective scheme” approach [55], h’ h b w IC is ase on the principle of fastest conver- d 
gence. Within this method the next to leading QCD correction should be absorbed in 
the definition of the “effective” running coupling. 2. Principle of “minimal sensitiv- 
ity” Ed: If the approximant depends on “nonphysical parameters” (in our case p or 
A), then these parameters should be chosen according to the criteria of minimal sensi- 
tivity of approximants to the variation of these parameters (assuming, of course, that 
the perturbative series are sumable). 3. Brodsky-Lepage-Mackenzie (BLM) approach 
[57], which suggests one fix the scale by the size of the quark vacuum polarization 
effects. As a result, the next to leading order QCD correction becomes independent of 
the number of quark flavors Nf. However, at higher orders there are different sources 
of Nf dependence (see below). 

We will apply the above approaches to eq. (53) and will find a scale, which gives 
very good results for all considered criteria. (The results of this analysis has been 
briefly reported in ref. [58].) For the recent analysis see: [59] where the procedure of 
summing the perturbative series analytically continued from the euclidean region to 
Minkowski region has been suggested; The optimization of perturbation theory has 
been studied in ref. [60, 611 for jet cross sections in electron positron annihilation. 
The optimized perturbation theory is tested for different physical quantities in QED 
and QCD in [62]. In [63], the large order behavior of perturbation theory was studied. 
The scale ambiguity problem has been considered in [65], for the & model. In ref. 
[66], the attempt to extend of the BLM approach beyond the next-to-leading order 
has been made. 

In fig.6 we have plotted rs(t) for different N,. As one can see, within the region 
i E (-1.5,-0.51 7s has a very weak dependence on the number of flavors NJ as 
well as on the parameter t. Corresponding to the 3-100~ coefficient r*(t) straight 
lines will intersect in one point for t = -0.7 E [-1.5,-0.51, which is obvious from 
the formula (55). The value 2 = -0.7 corresponds to the BLM result [57] p2 = 

P&. “” and at this scale the flavor dependence is absorbed into the definition of 
the coupling. A few notes are in order. In the original BLM method [57] the scale 
is fixed by the contributions of quark vacuum-polarization insertions. At O(o:) this 
is straightforward and corresponds to t = -0.7 [57]. However, in the expression (56) 
the term O(Nj) is due purely to quark-vacuum polarization, while the O(Nf) term 
has, in addition, contributions from the four diagrams with quark loop correction in 
the three gluon vertex. On the graph-by-graph level it is not difficult to separate the 
different type of contributions. We have analyzed the contributions of these diagrams 
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and found that their separation doesn’t make a significant difference in the choice of 
scale. 

In fig.7 we have plotted the dependence of the partial sums 
R,(t) = CR=r r,(t)(a,/?r)“’ on the parameter t. Here the parametrisation (5) was 
used and ln;i; = 9, Nf = 5. (The general picture doesn’t change for other reasonable 
values of In and N,). We can see that Stevenson’s “minimal sensitivity” principle 
[56] works perfectly for the wide range of t E [-I, $31 for four-loop approximant and 
t E [-2, O] for three-loop approximant. (Similar analysis at three-loop level was done 
in [42]). 

According to the above analysis we found that the scale t = -0.710 suggested in [57] 
is good at the four-loop level as well (fig.6) and this value is within minimal sensitivity 
region (fig.7). Moreover, we found that if we choose the t-parameter in the following 
analytical form: t = 4C(3) - 11/2 + [2 +x(4) - (C(3) - 7/S)‘]& + 0(&l), which is 
equivalent to the definition of a new, say MS, scheme: 

/& = &[l+ (4<(3) - 11/2)& + [6<(4) - 2(4<(3) - 11/2)]s* + O(e3)] (59) 

then the NJ dependence and the C(3) terms cancel exactly at the 3-100~ level. As a 
result r2 = l/12. Moreover, the additional term 6[(4) in the definition (59) cancels 
C(4) terms in the hadronic vacuum polarization function at the 3-100~ level. Within 
this scheme the four-loop correction is almost independent of the number of flavors. 
The full result for the R-ratio has the following simple form: 

(‘30) 
where the remainder dependence on the number of flavors is within the small un- 
certainty f0.5 for all physically reasonable N, and completely negligible for any 
phenomenological applications. The last term is also very small (within 0.4(a,/?r)‘) 
and negligible. The running coupling could be parametrised in the standard form (5) 
with A= = 1.41A;iis. 

Using the “effective scheme” approach [55], let’s rewrite (60) as: 

R(s)=SxQ; 
,df 

f 
l+$+O(af) 1 

where the 3-100~ correction is absorbed into the definition of the effective coupling, 
which is given by (5) with A replaced by 

A Y 1.02AE 
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As we can see the new scheme fi almost coincides with the effective one and the 
fastest convergence is guaranteed, according to [55], within the wide range of energy 
defined by the renormalization group invariant criterion (note, A,,, is a renormaliza- 
tion group invariant quantity): 

s/A:,, N s/A& > 1 

In the fig.3 we have plotted the dependence of the partial sums for R, on the t- 
parameter. We can see that according to “Minimal sensitivity” principle,t-parameter 
should be chosen within 2 E (-2.5,O). If one chooses t according to MS, then for 
N, = 3 we get: 

Rz3 
T =3[l+~+3.65(~)*+9.83(~)3] tO(cy;l) 

Corrections are much smaller then in MS (see [31]). However, if we create a new 
scheme, connected with the r-lepton: t, = t= - 19/12 = 45(3) - 85/12 we get: 

1t~+-L(~)‘-(!g (6.1076 + 1.2704N, - 0.0141N;) 
I 

+ O(cx;) 

(63) , 
The N, dependence and the C(3)-term cancel exactly at O(az). 

6.4 Estimation of theoretical uncertainty 

We will use our four-loop result for estimating the theoretical uncertainty of R. (For 
the similar analysis of perturbative calculations of coefficient functions in operator 
product expansions see: (261.) It should be stressed that within this new scheme the 
ratio rs/rs is large and this could mean that the asymptotic series blows up at this 
level. In this situation it seems that one of the reasonable way is to assume that our 
series reaches its “optimal order” already at O(a:). With this assumption we get for 
the QCD contribution in R: 

&cc+ - RZiZ 
- &PM 

QCD = 
RQPM 

=TtifZ(:)*+(&=4%) (64) 

There is an alternative way. We can include the calculated four-loop correction and 
estimate the theoretical error by the last included term. In this case we get: 

(pi3 - $E 
-RQPM 

QCD = 
RQPM 

= : + A (:)’ + (16.2 zt 0.5) (:)3 + (6;AD = 4%) (65) 
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An analysis of fig.6 shows that the deviation of the four-loop approximant from the 
horizontal line is also about 4% within the reasonable range of t-parameter. This 
is consistent with Stevensons principle. Note also, that the estimation of 4% very 
weakly depends on the choice of scheme-scale within reasonable range of t-parameter. 

It seems that the eq.(65) is most suitable for phenomenological applications. The 
comparison of the theoretical and experimental uncertainties shows that For the fu- 
ture, progress in QCD tests awaits more precise measurements. 

7 Concluding Remarks 

Using the current development of calculational methods, algorithms and computer 
programs for algebraic programming systems we have calculated the important quan- 
tity R(s) in electron positron annihilation process at the four-loop level of perturba- 
tive QCD. Nowadays this is the most complicated analytical perturbative calculation 
of a physical quantity. The importance of this calculation has been motivated also 
because of the erroneous results of the previous calculations [25] with dramatic phe- 
nomenological consequences. Our result [27] is smaller by an order of magnitude and 
has the opposite sign compared to the wrong results of [25]. 

In the present paper we have described the basic methods of calculation and some of 
the key details. .4s an intermediate result of the calculation, we evaluate the four-loop 
QED p-function and, using the method first suggested by Braaten [29], we find the 
O(crz) perturbative correction to the quantity R, = F(T- -+ V, + hadrons)/I’(r- --t 
v,e-T,) in T-decay. 

For the R(s) and R, quantities we have considered the scheme-scale ambiguity prob- 
lem within ‘t Hooft’s MS-prescription. We used the three most popular approaches 
for resolving the scheme-scale ambiguity. We find that Stevenson’s minimal sensitiv- 
ity principle works perfectly within a wide range of scheme-scale parameter. We fix 
the scale which simultaneously satisfies the Principle of minimal sensitivity, Brodsky- 
Lepage-Mackenzie approach and Grunberg’s fastest apparent convergence principle. 
We have estimated the theoretical uncertainty of perturbative calculation of R(s) at 
4%. 

Finally we should include the following notes. The recalculation of R(s) and the QED 
p-function has also been done by the authors of the original calculation (251. Their 
results completely agree with ours. However, as correctly concluded by A.Kataev in 
ref. [68], these two calculations are not completely independent in a following sense 
of this statement. Indeed, a few notes are in order. As we have mentioned above, 
the program [44], which has been used in the original calculation [25] turned out to 
be incorrect. It contained at least two sources of errors. One of them, which was due 
to an incorrect logical structure of the program [44] for trace calculations, has been 
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discovered by one of us (L.R.S.) w i e working with the program [16]. (Note, that h’l 

the program [16] uses some ideas of [44] however, this program contains a number of 
original solutions and the structure has been changed according to the needs of IBM 
version of SCHOONSCHIP. Note also that the program [16] has been published in [15] 
with the name MINCER) Another source of errors has been discovered by A.Kataev, 
S.Larin and one of us (L.R.S.) with the help of test runs on the correct program 
[16]. The error was insufficient expansion in Laurent series of one-loop “basic” scalar 
integrals. (For more detailed discussion of the status of above programs see ref. [17].) 

Thus the recalculation of R(s) and QED p-f unction has been done by A.Kataev 
and S.Larin in [28, 52, 531 with the help of corrected program [44] 3 (Note that the 
wrong program block in [44] was substituted by the corresponding block of MINCER 
[16, 151). Nevertheless t.he fact that these two calculations give identical results is 
strong evidence that the results are correct. 
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